Solutions
3.3: Higher-Order Linear, Homogeneous Equations with Constant Coefficients Combinations of Roots

Exercise 1. Find the general solution to the 5th-order linear, homogeneous equation whose characteristic equation is given by

$$
\begin{aligned}
& \left(r^{2}+4\right)^{2}\left(r^{2}-4 r+5\right) r^{3}=0 . \\
& \left(r^{2}+4\right)=0 \Rightarrow r= \pm 2 i \\
& \left(r^{2}-4 r+5\right)=0 \Rightarrow r=2 \pm i \\
& r^{3}=0 \Rightarrow r=0 \\
& R_{\text {bots }}=0,0,0,2 \pm i, \pm 2 i, \pm 2 i \\
& y=C_{1}+C_{2} x+C_{3} x^{2}+e^{2 x}\left(a_{1} \cos x+b_{1} \sin x\right) \\
& \quad+\left(a_{2} \cos 2 x+b_{2} \sin 2 x\right)+x\left(a_{3} \cos 2 x+b_{3} \sin 2 x\right) .
\end{aligned}
$$

Exercise 2. Find the general solution to the 11th-order linear homogeneous equation whose characteristic equation has roots $3,-5,0,0,0,0,-5,2 \pm 3 i$ and $2 \pm 3 i$.

$$
\begin{aligned}
y= & \left(c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{4}\right)+c_{5} e^{3 x}+\left(c_{6} e^{-5 x}+c_{7} \cdot x e^{-5 x}\right) \\
& +e^{2 x}\left(a_{1} \cos 3 x+b_{1} \sin 3 x\right)+x e^{2 x}\left(a_{2} \cos 3 x+b_{2} \sin 3 x\right)
\end{aligned}
$$

